Modeling > Stochastic Model
We have successfully conduct ODE model for both T3 design and P2 design. However, there's a inborn defect. The ODE models regard memory as a switch, only two state - 0 and 1. Actually, the memory is continous. Besides that, since the number of molecules in cell is not large enough, which means the circuit itself has a stochastic property. For these reasons, we conduct a stochastic model. Since ODE model for P2 is not as good as the one for T3, we will only conduct stochastic model for the T3 design.
Goal of Simulation
This time, the goals are different. Here're our goals:
No one can learn everything all at a time. No matter from scientific research or from our daily experience, learning is a slow process. We gain knowledge through practice, so does a dog.
All of us forget things. No matter whether you forget to shut down the computer before sleep or you lock the door without bringing the key, forgetting is a natural process. Why not a dog? In our stochastic model, we aimed at simulating the process of forget.
The first priority is to accord to the truth table. But hey, let's think about it. If we can simulating the learning and forgetting process, which means the bistable turn guadually from CI to CI434 and then back, there's no doubt that the dog will follow the truth table. So, we'll skip this part, you can check it by yourself!
Construction
Based on our ODE model, constructing stochastic model is a relatively simple process. We use the equations from ODE model, only splitting them into more elementary ones. We also use the parameters from the old model, with slightly changes.
Since there're not much new information involved, we'll leave out detailed construction process here. You can download source file here. You can even figure out a better set of parameters! If so, don't forget to tell us!
Result
^Top
|