Revision as of 08:34, 21 September 2009 by Guittet (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Modeling overview

Protein domain of interest

Our protein of interest is LOVTAP. This protein was sythetically engineered by Sosnick group. It is a fusion protein between a LOV domain (Avena Sativa phototropin 1) and the E. Coli tryptophan repressor. This protein undergoes changes under light activation as shown by Sosnick et al, in fact when the protein is activated by light it binds DNA and inversely. For more information about LOVTAP protein please click here.


Starting material

Both LOV domain crystallography files were obtained from RCSB:

Light activated LOV domain
Dark LOV domain

These crystallographies were done by Halavaty et al..

Molecular dynamics: a little theory

Molecular dynamics simulation consists of the numerical, step-by-step, solution of the classical equations of motion. For this purpose we need to be able to calculate the forces acting on the atoms, and these are usually derived from a potential energy.

         Click here to expand




Analysis and validation


Atom movement analysis


Analysis methodology


To do

- Model allosteric interactions between LOVTAP & TrpR
What will be done:
- Model of LOVTAP in dark phase
- Model of LOVTAP in light phase
- Characterize how the J-alpha helix changes
- Model structural changes that enhance the switch feature of LOVTAP e.g. in dark phase: really weak interaction between LOVTAP and the corresponding DNA sequence, in light phase: strong binding of LOVTAP on DNA.
- Between Light state and Dark State
- RMS between light state and dark state
- length between the two arms N C
- only cytochrome with interactions in light state and dark state

To envisage

- Molecular mutational assay