Team:Paris/Transduction overview

From 2009.igem.org

(Difference between revisions)
(Introduction)
Line 39: Line 39:
-
[[Team:Paris/Production_overview_strategy#Overview|Strategy]] and [[Team:Paris/Production_overview_Construction#Overview|Construction]] part explains our aim in this OMV production system.  
+
[[Team:Paris/Transduction_overview_strategy#bottom |C. Our strategy]] and [[Team:Paris/Transduction_overview_construction#bottom |D. Construction]] part explains our aim in this OMV production system.  

Revision as of 14:31, 4 September 2009

iGEM > Paris > Reception > Overview

Introduction

This part of the project was focus on two points:

  • The fusion between the OMVs and the targeted bacteria.
  • The activation of the transcription of a genetic construction after fusionning the OMVs with the outer membrane of the receiving bacterium.


The sinequanone conditions : we tried to achieve this aim without sacrifying important proprieties of our message : specific, repeatable , multidirectional.


It seems that we have two possible ways : the ABC transporters or the two component systems .


ABC transporters and two component systems are natural transport systems (export or import) of nutriments or toxines, and even information, the mecanism is mostly unknown but the DNA-containing OMVs could be a useful mean of information transport. Here for information about ABC transporter and Two Component System.


C. Our strategy and D. Construction part explains our aim in this OMV production system.


References

  1. ^ D-ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. Lopilato JE & Beckwith JR. 1984 - [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=6327616 6327616]
  2. ^ Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. Härle C & Braun V. 1995 - [http://www.ncbi.nlm.nih.gov/pubmed/7729419 7729419]
  3. ^ A comparative analysis of ABC transporters in complete microbial genomes. Tomii K & Kanehisa M. 1998- [http://www.ncbi.nlm.nih.gov/pubmed/9799792 9799792]
  4. ^ The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons.De Wulf P & Lin EC. 1999 - [http://www.ncbi.nlm.nih.gov/pubmed/10542180 10542180]
  5. ^ Two-component signal transduction. Stock AM & Goudreau PN. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/10966457 10966457]
  6. ^ Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Yaron S & Matthews KR. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]
  7. ^ Periplasmic binding proteins: a versatile superfamily for protein engineering. Dwyer MA & Hellinga HW. 2004- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]
  8. ^ Gene regulation by transmembrane signaling. Braun V & Sauter A. 2006- [http://www.ncbi.nlm.nih.gov/pubmed/16718597 16718597]
  9. ^ Signal transduction: networks and integrated circuits in bacterial cognition. Baker MD & Stock JB 2007- [http://www.ncbi.nlm.nih.gov/pubmed/18054766 18054766]
  10. ^ Systems biology of bacterial chemotaxis. Baker MD & Stock JB. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/16529985 16529985]
  11. ^ Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? Ibrahim M & Monnet V. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/17921293 17921293]
  12. ^ SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. Thie H & Hust M. 2008- [http://www.ncbi.nlm.nih.gov/pubmed/18504019 18504019]
  13. ^ Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Kyriakidis DA & Tiligada E. 2009- [http://www.ncbi.nlm.nih.gov/pubmed/19198978 19198978]
  14. ^ comparative analysis of ABC transporter. Tomii & Kanehisa 2009- [http://genome.cshlp.org/content/8/10/1048.full.html#ref-list-1 pdf-link]