Team:Edinburgh/biology(biobricks)

From 2009.igem.org

Revision as of 11:14, 14 October 2009 by Dzonni (Talk | contribs)

Biology - Biobricks
Personal note

Dasha
Quick links:

tnt.R1 & tnt.R3 (Bba_xxxx)
trg-envZ (trz) fusion protein (Bba_J58104)
ompC Promoter (Bba_R0082)
Enhanced Yellow Fluorescent Protein (Bba_E0430)
onr (Bba_xxxx)
yeaR promoter (Bba_xxxx)
luxAB-gfp fusion protein (Bba_xxxx)
lump (Bba_xxxx)
luxCDE from X. luminescence (Bba_xxxx)
nsrR from Nitrosomonas Europaea (BBa_xxxx)
nirK promoter (BBa_xxxx)
Biobrick Name
Key
Description
tnt.R1 & tnt.R3 (Bba_xxxx)
TNT.R1 and TNT.R3 are computationally derived ligand receptors specific for TNT. The ribose-binding pocket of ribose-binding protein, a member of the E. coli periplasmic binding protein (PBP) family, was reconfigured so that each receptor recognizes TNT instead of the wild-type ligand.

Looger, L. L., Dwyer, M. A., Smith J. J., and Hellinga, H. W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185-190 (2003).
trg-envZ (trz) fusion protein (Bba_J58104)
This hybrid protein contains the periplasmic and transmembrane domains of the chemoreceptor Trg and the cytoplasmic domain of the osmosensor EnvZ. Upon interaction with the TNT-TNT.R1/R3 complex, Trg-EnvZ undergoes a conformational change and autophosphorylates. Subsequently, it phosphorylates the second messenger ompR.

This part was previously submitted into the Registry. However, the sequence information is inconsistent. We requested stabs from the Registry, but failed to obtain the correct construct. Hence, we contacted the following authors and they kindly sent us plasmids carrying the construct.

Baumgartner, J. W., Kim, C., Brisette, R. E., Inoue, M., Park, C., and Hazelbauer, G. L. Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognises sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. Journal of Bacteriology, 1157-1163 (1994).
ompC promoter (Bba_R0082)
The E. coli EnvZ-OmpR two-component system is a well-characterized signaling pathway. EnvZ, a membrane protein, regulates the levels of phosphorylated OmpR (OmpR-P), which in turn regulates gene transcription. The best-studied genes regulated by this system are ompF and ompC. There are several OmpR binding sites at the ompF and ompC promoters.

In our project, a fusion protein (Trg-EnvZ, J58104) carrying the EnvZ histidine kinase activity will phosphorylate ompR in response to TNT binding to a receptor. ompR-P will bind to the upstream binding sequences, thereby controlling genes of interest. The genes that we have chosen to put under the control of the ompR-controlled promoter are those coding for enhanced yellow fluorescent protein and PETN reductase (onr).

It is believed that the native EnvZ-OmpR senses changes in osmolarity. High osmolarity activates EnvZ, thereby generating more ompR-P that binds to the upstream operator sites of ompC. However, in 2006, Batchelor and Goulian compared the effects of osmolarity and procaine and concluded that procaine activates EnvZ-OmpR signaling whereas osmolarity only has a weak effect on the system.

Click here for the characterization results for this promoter.

Batchelor, E., and Goulian, M. Imaging OmpR localization in Escherichia coli. Molecular Microbiology 59(6),1767-78 (2006).

Maeda, S., and Mizuno T. Evidence for multiple Omp-R binding sites in the upstream activation sequence of the ompC promoter in Escherichia coli: a single OmpR-binding site is capable of activating the promoter. J. Bacteriol. 172 (1), 501-503 (1990).
Edinburgh University iGEM Team 2009