Team:Paris/Transduction overview

From 2009.igem.org

(Difference between revisions)
(Introduction)
(Introduction)
Line 25: Line 25:
This part of the project was focus on two points:
This part of the project was focus on two points:
-
fusion between the vesicle and the targeted bacteria.
+
*The fusion between the OMVs and the targeted bacteria.
-
- to enable gene transcription after fusionning OMVs with the outer membrane of the receiving bacterium.  
+
*The activation of the transcription of a genetic construction after fusionning the OMVs with the outer membrane of the receiving bacterium.  
-
We also hope that we could achieve this aim without sacrifying important proprieties of our message : specific, repeatable , multidirectional.
+
The sinequanone conditions : we tried to achieve this aim without sacrifying important proprieties of our message : specific, repeatable , multidirectional.
It seems that we have two possible ways : the ABC transporters or the two component systems .
It seems that we have two possible ways : the ABC transporters or the two component systems .
-
ABC transporters and two component systems are natural transport system (export or import) of information, nutriments or toxines.
 
 +
ABC transporters and two component systems are natural transport system (export or import) of nutriments or toxines.
 +
There is another possibility but the mecanism is mostly unknown : the DNA-containing OMVs which could be a useful mean of information transport.
-
There is another possibility but the mecanism is mostly unknown : the DNA-containing OMVs which could be a useful mean of information transport.
 
<html>
<html>
Line 47: Line 47:
====References====
====References====
<ol class="references">
<ol class="references">
-
<li> [[Team:Paris/Transduction_overview#1 | 1]] D-ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. Lopilato JE & Beckwith JR. 1984 -  [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=6327616 6327616]</li>
+
<li> [[Team:Paris/Transduction_overview#1 | ^]] D-ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. Lopilato JE & Beckwith JR. 1984 -  [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=6327616 6327616]</li>
-
<li> [[Team:Paris/Transduction_overview#2 | 2]] Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. Härle C & Braun V. 1995 -  [http://www.ncbi.nlm.nih.gov/pubmed/7729419 7729419]</li>
+
<li> [[Team:Paris/Transduction_overview#2 | ^]] Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. Härle C & Braun V. 1995 -  [http://www.ncbi.nlm.nih.gov/pubmed/7729419 7729419]</li>
-
<li> [[Team:Paris/Transduction_overview#3 | 3]] A comparative analysis of ABC transporters in complete microbial genomes. Tomii K & Kanehisa M. 1998- [http://www.ncbi.nlm.nih.gov/pubmed/9799792 9799792]</li>
+
<li> [[Team:Paris/Transduction_overview#3 | ^]] A comparative analysis of ABC transporters in complete microbial genomes. Tomii K & Kanehisa M. 1998- [http://www.ncbi.nlm.nih.gov/pubmed/9799792 9799792]</li>
-
<li> [[Team:Paris/Transduction_overview#4 | 4]] The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons.De Wulf P & Lin EC.  1999 - [http://www.ncbi.nlm.nih.gov/pubmed/10542180 10542180]</li>
+
<li> [[Team:Paris/Transduction_overview#4 | ^]] The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons.De Wulf P & Lin EC.  1999 - [http://www.ncbi.nlm.nih.gov/pubmed/10542180 10542180]</li>
-
<li> [[Team:Paris/Transduction_overview#5 | 5]] Two-component signal transduction. Stock AM & Goudreau PN. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/10966457 10966457]</li>
+
<li> [[Team:Paris/Transduction_overview#5 | ^]] Two-component signal transduction. Stock AM & Goudreau PN. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/10966457 10966457]</li>
-
<li> [[Team:Paris/Transduction_overview#6 | 6]] Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Yaron S & Matthews KR. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]</li>
+
<li> [[Team:Paris/Transduction_overview#6 | ^]] Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Yaron S & Matthews KR. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]</li>
-
<li> [[Team:Paris/Transduction_overview#7 | 7]] Periplasmic binding proteins: a versatile superfamily for protein engineering. Dwyer MA & Hellinga HW. 2004- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]</li>
+
<li> [[Team:Paris/Transduction_overview#7 | ^]] Periplasmic binding proteins: a versatile superfamily for protein engineering. Dwyer MA & Hellinga HW. 2004- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]</li>
-
<li> [[Team:Paris/Transduction_overview#8 | 8]] Gene regulation by transmembrane signaling. Braun V & Sauter A. 2006- [http://www.ncbi.nlm.nih.gov/pubmed/16718597 16718597]</li>
+
<li> [[Team:Paris/Transduction_overview#8 | ^]] Gene regulation by transmembrane signaling. Braun V & Sauter A. 2006- [http://www.ncbi.nlm.nih.gov/pubmed/16718597 16718597]</li>
-
<li> [[Team:Paris/Transduction_overview#9 | 9]] Signal transduction: networks and integrated circuits in bacterial cognition. Baker MD & Stock JB 2007- [http://www.ncbi.nlm.nih.gov/pubmed/18054766 18054766]</li>
+
<li> [[Team:Paris/Transduction_overview#9 | ^]] Signal transduction: networks and integrated circuits in bacterial cognition. Baker MD & Stock JB 2007- [http://www.ncbi.nlm.nih.gov/pubmed/18054766 18054766]</li>
-
<li> [[Team:Paris/Transduction_overview#10 | 10]] Systems biology of bacterial chemotaxis. Baker MD & Stock JB. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/16529985 16529985]</li>
+
<li> [[Team:Paris/Transduction_overview#10 | ^]] Systems biology of bacterial chemotaxis. Baker MD & Stock JB. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/16529985 16529985]</li>
-
<li> [[Team:Paris/Transduction_overview#11 | 11]] Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? Ibrahim M & Monnet V. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/17921293 17921293]</li>
+
<li> [[Team:Paris/Transduction_overview#11 | ^]] Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? Ibrahim M & Monnet V. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/17921293 17921293]</li>
-
<li> [[Team:Paris/Transduction_overview#12 | 12]] SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. Thie H & Hust M. 2008- [http://www.ncbi.nlm.nih.gov/pubmed/18504019 18504019]</li>
+
<li> [[Team:Paris/Transduction_overview#12 | ^]] SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. Thie H & Hust M. 2008- [http://www.ncbi.nlm.nih.gov/pubmed/18504019 18504019]</li>
-
<li> [[Team:Paris/Transduction_overview#13 | 13]] Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Kyriakidis DA & Tiligada E. 2009- [http://www.ncbi.nlm.nih.gov/pubmed/19198978 19198978]</li>
+
<li> [[Team:Paris/Transduction_overview#13 | ^]] Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Kyriakidis DA & Tiligada E. 2009- [http://www.ncbi.nlm.nih.gov/pubmed/19198978 19198978]</li>
-
<li> [[Team:Paris/Transduction_overview#14 | 14]] comparative analysis of ABC transporter. Tomii & Kanehisa 2009- [http://genome.cshlp.org/content/8/10/1048.full.html#ref-list-1 pdf-link]</li>
+
<li> [[Team:Paris/Transduction_overview#14 | ^]] comparative analysis of ABC transporter. Tomii & Kanehisa 2009- [http://genome.cshlp.org/content/8/10/1048.full.html#ref-list-1 pdf-link]</li>
</ol>
</ol>

Revision as of 14:13, 4 September 2009

iGEM > Paris > Reception > Overview

Introduction

This part of the project was focus on two points:

  • The fusion between the OMVs and the targeted bacteria.
  • The activation of the transcription of a genetic construction after fusionning the OMVs with the outer membrane of the receiving bacterium.


The sinequanone conditions : we tried to achieve this aim without sacrifying important proprieties of our message : specific, repeatable , multidirectional. It seems that we have two possible ways : the ABC transporters or the two component systems .

ABC transporters and two component systems are natural transport system (export or import) of nutriments or toxines. There is another possibility but the mecanism is mostly unknown : the DNA-containing OMVs which could be a useful mean of information transport.


References

  1. ^ D-ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. Lopilato JE & Beckwith JR. 1984 - 6327616
  2. ^ Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. Härle C & Braun V. 1995 - 7729419
  3. ^ A comparative analysis of ABC transporters in complete microbial genomes. Tomii K & Kanehisa M. 1998- 9799792
  4. ^ The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons.De Wulf P & Lin EC. 1999 - 10542180
  5. ^ Two-component signal transduction. Stock AM & Goudreau PN. 2000- 10966457
  6. ^ Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Yaron S & Matthews KR. 2000- 11010892
  7. ^ Periplasmic binding proteins: a versatile superfamily for protein engineering. Dwyer MA & Hellinga HW. 2004- 11010892
  8. ^ Gene regulation by transmembrane signaling. Braun V & Sauter A. 2006- 16718597
  9. ^ Signal transduction: networks and integrated circuits in bacterial cognition. Baker MD & Stock JB 2007- 18054766
  10. ^ Systems biology of bacterial chemotaxis. Baker MD & Stock JB. 2007- 16529985
  11. ^ Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? Ibrahim M & Monnet V. 2007- 17921293
  12. ^ SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. Thie H & Hust M. 2008- 18504019
  13. ^ Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Kyriakidis DA & Tiligada E. 2009- 19198978
  14. ^ comparative analysis of ABC transporter. Tomii & Kanehisa 2009- pdf-link