Team:Groningen/Modelling/Arsenic

From 2009.igem.org

(Difference between revisions)
m (The raw model: Using background for color coding to avoid mistaking the equations for links.)
(No more ArsD/OpN and more accurate stoichometric values for ArsR.)
Line 9: Line 9:
<html></style></html>
<html></style></html>
-
[[Image:Arsenic_filtering.png|frame|A schematic representation of the processes involved in arsenic filtering (keep in mind that ArsR ''represses'' the expression of the genes behind OpG). Note that ArsD is not shown here, as it is [[Team:Groningen/BLAST|not present in our E. coli]] and has a role analogous to ArsR (except that it is only produced by OpN, which is also not shown here).]]
+
[[Image:Arsenic_filtering.png|frame|A schematic representation of the processes involved in arsenic filtering (keep in mind that ArsR ''represses'' the expression of the genes behind OpG). Note that ArsD is not shown here, as it is [[Team:Groningen/BLAST|not present in our E. coli]] and has a role analogous to ArsR.]]
<!--[[Image:Arsenic_accumulation.png|frame|A schematic representation of the substances involved. Note that everything involved with ArsD is semi-transparent because it is [[Team:Groningen/BLAST|not present in our E. coli]].]]-->
<!--[[Image:Arsenic_accumulation.png|frame|A schematic representation of the substances involved. Note that everything involved with ArsD is semi-transparent because it is [[Team:Groningen/BLAST|not present in our E. coli]].]]-->
Line 24: Line 24:
* Intracellular:
* Intracellular:
** As(III)
** As(III)
-
** OpN (concentration of unbound operators, not used in this model)
 
** OpG (concentration of unbound operators)
** OpG (concentration of unbound operators)
** OpH (concentration of ArsR producing operators that are always on)
** OpH (concentration of ArsR producing operators that are always on)
** <del>As(V)</del>
** <del>As(V)</del>
** <del>ArsC</del>
** <del>ArsC</del>
-
** ArsR {{infoBox|ArsR binds to OpN/OpG to repress production of the genes they regulate, and binds to As(III) to make it less of a problem for the cell.}}
+
** ArsR {{infoBox|ArsR binds to OpG to repress production of the genes they regulate, and binds to As(III) to make it less of a problem for the cell.}}
-
** ArsD
+
** ArsR<sub>As</sub> (bound to As(III))
** ArsR<sub>As</sub> (bound to As(III))
*** At equilibrium: ArsR As(III) = (k1<sub>off</sub>/k1<sub>on</sub>) ArsR<sub>As</sub>
*** At equilibrium: ArsR As(III) = (k1<sub>off</sub>/k1<sub>on</sub>) ArsR<sub>As</sub>
-
** ArsD<sub>As</sub> (bound to As(III))
 
-
** ArsR<sub>opn</sub> (bound to operator)
 
-
** ArsD<sub>opn</sub> (bound to operator)
 
** ArsR<sub>opg</sub> (bound to opg)
** ArsR<sub>opg</sub> (bound to opg)
-
** ArsD<sub>opg</sub> (bound to opg)
 
The variables above can be related to each other through the following "reactions" (color coding is continued below to show which parts of the differential equations refer to which groups of reactions):
The variables above can be related to each other through the following "reactions" (color coding is continued below to show which parts of the differential equations refer to which groups of reactions):
* Transport (based on [[Team:Groningen/Literature#Rosen1996|Rosen1996]], [[Team:Groningen/Literature#Meng2004|Meng2004]] and [[Team:Groningen/Literature#Rosen2009|Rosen2009]])
* Transport (based on [[Team:Groningen/Literature#Rosen1996|Rosen1996]], [[Team:Groningen/Literature#Meng2004|Meng2004]] and [[Team:Groningen/Literature#Rosen2009|Rosen2009]])
-
** <del>As(V)<sub>ex</sub> &rarr; As(V), using phosphate transporters? ([[Team:Groningen/Literature#Summers2009|Summers2009]])</del>
 
-
** <del>As(V)<sub>ex</sub> &rarr; As(III), using ArsC ([[Team:Groningen/Literature#Summers2009|Summers2009]])</del>
 
-
** <del>As(III) &rarr; As(III)<sub>ex</sub>, using ArsAB (helped by ArsD) ([[Team:Groningen/Literature#Summers2009|Summers2009]])</del>
 
** <span class="import">As(III)<sub>ex</sub> + GlpF &harr; GlpF<sub>As</sub></span>
** <span class="import">As(III)<sub>ex</sub> + GlpF &harr; GlpF<sub>As</sub></span>
** <span class="import">GlpF<sub>As</sub> &rarr; GlpF + As(III)</span>
** <span class="import">GlpF<sub>As</sub> &rarr; GlpF + As(III)</span>
Line 52: Line 43:
* Accumulation (based on [[Team:Groningen/Literature#Chen1997|Chen1997]])
* Accumulation (based on [[Team:Groningen/Literature#Chen1997|Chen1997]])
** As(III) + ArsR &harr; ArsR<sub>As</sub>
** As(III) + ArsR &harr; ArsR<sub>As</sub>
-
** As(III) + ArsD &harr; ArsD<sub>As</sub>
+
** OpG + 2 ArsR &harr; ArsR<sub>opg</sub>
-
** OpN + ArsR &harr; ArsR<sub>opn</sub>
+
-
** OpN + ArsD &harr; ArsD<sub>opn</sub>
+
-
** OpG + ArsR &harr; ArsR<sub>opg</sub>
+
-
** OpG + ArsD &harr; ArsD<sub>opg</sub>
+
-
** OpN &rarr; OpN + ArsR + ArsB + ArsD (transcription + translation)
+
** OpG &rarr; OpG + ArsR<span class="export"> + ArsB</span> (transcription + translation)
** OpG &rarr; OpG + ArsR<span class="export"> + ArsB</span> (transcription + translation)
** OpH &rarr; OpH + ArsR (transcription + translation)
** OpH &rarr; OpH + ArsR (transcription + translation)
** ArsR &rarr; null (degradation)
** ArsR &rarr; null (degradation)
-
** ArsD &rarr; null (degradation)
 
Resulting in the following differential equations (please note that some can be formed by linear combinations of the others), using color coding to show the correspondence to the reactions above:
Resulting in the following differential equations (please note that some can be formed by linear combinations of the others), using color coding to show the correspondence to the reactions above:
Line 68: Line 53:
* (d/dt) GlpF = <span class="import">-k5<sub>on</sub> As(III)<sub>ex</sub> GlpF + (k5<sub>off</sub>+k6) GlpF<sub>As</sub></span>
* (d/dt) GlpF = <span class="import">-k5<sub>on</sub> As(III)<sub>ex</sub> GlpF + (k5<sub>off</sub>+k6) GlpF<sub>As</sub></span>
* (d/dt) GlpF<sub>As</sub> = <span class="import">k5<sub>on</sub> As(III)<sub>ex</sub> GlpF - (k5<sub>off</sub>+k6) GlpF<sub>As</sub></span>
* (d/dt) GlpF<sub>As</sub> = <span class="import">k5<sub>on</sub> As(III)<sub>ex</sub> GlpF - (k5<sub>off</sub>+k6) GlpF<sub>As</sub></span>
-
* (d/dt) ArsB = <span class="export">-k7<sub>on</sub> As(III) ArsB + (k7<sub>off</sub>+k8) ArsB<sub>As</sub> + &beta;4 (OpN+OpG) - ln(2)/&tau;B ArsB</span>
+
* (d/dt) ArsB = <span class="export">-k7<sub>on</sub> As(III) ArsB + (k7<sub>off</sub>+k8) ArsB<sub>As</sub> + &beta;4 OpG - ln(2)/&tau;B ArsB</span>
* (d/dt) ArsB<sub>As</sub> = <span class="export">k7<sub>on</sub> As(III) ArsB - (k7<sub>off</sub>+k8) ArsB<sub>As</sub></span>
* (d/dt) ArsB<sub>As</sub> = <span class="export">k7<sub>on</sub> As(III) ArsB - (k7<sub>off</sub>+k8) ArsB<sub>As</sub></span>
-
* (d/dt) As(III) = - (k1<sub>on</sub> ArsR+k2<sub>on</sub> ArsD) As(III) + k1<sub>off</sub> ArsR<sub>As</sub> + k2<sub>off</sub> ArsD<sub>As</sub><span class="export"> - k7<sub>on</sub> As(III) ArsB + k7<sub>off</sub> ArsB<sub>As</sub></span><span class="import"> + (Vs/Vc) k6 GlpF<sub>As</sub></span>
+
* (d/dt) As(III) = - (d/dt) ArsR<sub>As</sub><span class="export"> - k7<sub>on</sub> As(III) ArsB + k7<sub>off</sub> ArsB<sub>As</sub></span><span class="import"> + (Vs/Vc) k6 GlpF<sub>As</sub></span>
-
* (d/dt) OpN = - (k3<sub>on</sub> ArsR+k4<sub>on</sub> ArsD) OpN + k3<sub>off</sub> ArsR<sub>opn</sub> + k3<sub>off</sub> ArsD<sub>opn</sub>
+
* (d/dt) OpG = - (d/dt) ArsR<sub>opg</sub>
-
* (d/dt) OpG = - (k3<sub>on</sub> ArsR+k4<sub>on</sub> ArsD) OpG + k3<sub>off</sub> ArsR<sub>opg</sub> + k3<sub>off</sub> ArsD<sub>opg</sub>
+
* (d/dt) ArsR = &beta;1 OpG + &beta;3 OpH - (ln(2)/&tau;R) ArsR - (d/dt) ArsR<sub>As</sub> - 2 (d/dt) ArsR<sub>opg</sub>
-
* (d/dt) ArsR = &beta;1 (OpN+OpG) + &beta;3 OpH - (ln(2)/&tau;R+k1<sub>on</sub> As(III)+k3<sub>on</sub> (OpN+OpG)) ArsR + k1<sub>off</sub> ArsR<sub>As</sub> + k3<sub>off</sub> (ArsR<sub>opn</sub>+ArsR<sub>opg</sub>)
+
-
* (d/dt) ArsD = &beta;2 OpN - (ln(2)/&tau;D+k2<sub>on</sub> As(III)+k4<sub>on</sub> (OpN+OpG)) ArsD + k2<sub>off</sub> ArsD<sub>As</sub> + k4<sub>off</sub> (ArsD<sub>opn</sub>+ArsD<sub>opg</sub>)
+
* (d/dt) ArsR<sub>As</sub> = k1<sub>on</sub> ArsR As(III) - k1<sub>off</sub> ArsR<sub>As</sub>
* (d/dt) ArsR<sub>As</sub> = k1<sub>on</sub> ArsR As(III) - k1<sub>off</sub> ArsR<sub>As</sub>
-
* (d/dt) ArsD<sub>As</sub> = k2<sub>on</sub> ArsD As(III) - k2<sub>off</sub> ArsD<sub>As</sub>
+
* (d/dt) ArsR<sub>opg</sub> = k3<sub>on</sub> ArsR&sup2; OpG - k3<sub>off</sub> ArsR<sub>opg</sub>
-
* (d/dt) ArsR<sub>opn</sub> = k3<sub>on</sub> ArsR OpN - k3<sub>off</sub> ArsR<sub>opn</sub>
+
-
* (d/dt) ArsD<sub>opn</sub> = k4<sub>on</sub> ArsD OpN - k4<sub>off</sub> ArsD<sub>opn</sub>
+
-
* (d/dt) ArsR<sub>opg</sub> = k3<sub>on</sub> ArsR OpG - k3<sub>off</sub> ArsR<sub>opg</sub>
+
-
* (d/dt) ArsD<sub>opg</sub> = k4<sub>on</sub> ArsD OpG - k4<sub>off</sub> ArsD<sub>opg</sub>
+
Using the following constants/definitions:
Using the following constants/definitions:
Line 93: Line 72:
* degradation rate = ln(2)/&tau; {{infoBox|1=If you take just the degradation into account you will have the equation dC/dt = -k*C, which leads to C(t) = C(0) e<sup>-k t</sup>. So if k = ln(2)/&tau; we get C(t) = C(0) e<sup>-ln(2)/&tau; t</sup> = C(0) 2<sup>-t/&tau;</sup>. In other words &tau; is the time it takes for the concentration to half.}}
* degradation rate = ln(2)/&tau; {{infoBox|1=If you take just the degradation into account you will have the equation dC/dt = -k*C, which leads to C(t) = C(0) e<sup>-k t</sup>. So if k = ln(2)/&tau; we get C(t) = C(0) e<sup>-ln(2)/&tau; t</sup> = C(0) 2<sup>-t/&tau;</sup>. In other words &tau; is the time it takes for the concentration to half.}}
** ArsR half-life time = &tau;R
** ArsR half-life time = &tau;R
-
** ArsD half-life time = &tau;D
 
* &beta;1, &beta;2, etc. = production rates
* &beta;1, &beta;2, etc. = production rates
** &beta;1 = the production rate for ArsR behind the ars promoter
** &beta;1 = the production rate for ArsR behind the ars promoter
-
** &beta;2 = the production rate for ArsD behind the ars promoter
 
** &beta;3 = the production rate for ArsR behind our constitutive promoter
** &beta;3 = the production rate for ArsR behind our constitutive promoter
** &beta;4 = the production rate for ArsB behind the ars promoter
** &beta;4 = the production rate for ArsB behind the ars promoter
-
** &beta;1 = &beta;2 = &beta;3 ??? (all are unknown)
 
* Vs = volume of solution (excluding cells), Vc = total volume of cells (in solution) (so Vs+Vc is the total volume)
* Vs = volume of solution (excluding cells), Vc = total volume of cells (in solution) (so Vs+Vc is the total volume)
* v5, v7 = maximum reaction rates (see [[Team:Groningen/Glossary#MichaelisMenten|Michaelis-Menten equation]])
* v5, v7 = maximum reaction rates (see [[Team:Groningen/Glossary#MichaelisMenten|Michaelis-Menten equation]])
** v5 = k6 GlpFT
** v5 = k6 GlpFT
** v7 = k8 ArsBT
** v7 = k8 ArsBT
-
* v7'&middot;Op = reaction rate when As(III) = K7
+
* v7'&middot;OpG = reaction rate when As(III) = K7
** v7' = k8 (β4 τB/ln(2))
** v7' = k8 (β4 τB/ln(2))
* K5, K7 = concentration at which the reaction reaches half its maximum reaction rate (see [[Team:Groningen/Glossary#MichaelisMenten|Michaelis-Menten equation]])
* K5, K7 = concentration at which the reaction reaches half its maximum reaction rate (see [[Team:Groningen/Glossary#MichaelisMenten|Michaelis-Menten equation]])
** K5 = (k5off+k6) / k5on
** K5 = (k5off+k6) / k5on
-
** K7 = (k7off+k8) / k7on (in our model, with regulation of ArsB, this is the concentration As(III) at which the reaction rate equals v7'&middot;Op)
+
** K7 = (k7off+k8) / k7on (in our model, with regulation of ArsB, this is the concentration As(III) at which the reaction rate equals v7'&middot;OpG)
-
See [[Team:Groningen/Literature#Chen1997|Chen1997]] for the interplay between ArsR and ArsD.
+
See [[Team:Groningen/Literature#Chen1997|Chen1997]] for the interplay between ArsR and ArsD (the latter has a role similar to ArsR, but we do not treat it, as it is not present in our system).
-
 
+
-
{{todo}} Figure out relevant equations for metallochaperone function of ArsD?
+
-
 
+
-
{{todo}} Make sure all the multiplicities are correct (and/or taken care of in constants). E.g. does 1 mol ArsR (if it is bound) bind 1 mol As(III)?
+
==Transport==
==Transport==
Line 124: Line 96:
0 = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
0 = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
0 =  k5on As(III)ex GlpF - (k5off+k6) GlpFAs
0 =  k5on As(III)ex GlpF - (k5off+k6) GlpFAs
-
0 = -k7on As(III) ArsB + (k7off+k8) ArsBAs + β4 (OpN+OpG) - ln(2)/τB ArsB
+
0 = -k7on As(III) ArsB + (k7off+k8) ArsBAs + β4 OpG - ln(2)/τB ArsB
0 =  k7on As(III) ArsB - (k7off+k8) ArsBAs
0 =  k7on As(III) ArsB - (k7off+k8) ArsBAs
0 = -k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs
0 = -k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs
</pre>
</pre>
-
The third equation is equivalent to the second and the fifth can be eliminated from the fourth, leading to (OpN+OpG is abbreviated as Op, see the Accumulation section below):
+
The third equation is equivalent to the second and the fifth can be eliminated from the fourth, leading to:
<pre>
<pre>
0 = -k5on As(III)ex GlpF + k5off GlpFAs + (Vc/Vs) k8 ArsBAs
0 = -k5on As(III)ex GlpF + k5off GlpFAs + (Vc/Vs) k8 ArsBAs
0 = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
0 = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
-
0 = β4 Op - ln(2)/τB ArsB
+
0 = β4 OpG - ln(2)/τB ArsB
0 =  k7on As(III) ArsB - (k7off+k8) ArsBAs
0 =  k7on As(III) ArsB - (k7off+k8) ArsBAs
0 = -k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs
0 = -k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs
Line 204: Line 176:
===With ArsB regulation===
===With ArsB regulation===
-
As explained above ArsBAs needs a slightly different approach, as ArsB can be produced in response to arsenic ArsBT is not a (known) constant and we have a formula dependent on Op instead:
+
As explained above ArsBAs needs a slightly different approach, as ArsB can be produced in response to arsenic ArsBT is not a (known) constant and we have a formula dependent on OpG instead:
<pre>
<pre>
-
β4 (OpN+OpG) = ln(2)/τB ArsB
+
β4 OpG = ln(2)/τB ArsB
-
        ArsB = (β4 τB/ln(2)) Op
+
  ArsB = (β4 τB/ln(2)) OpG
(k7off+k8) ArsBAs = k7on As(III) ArsB
(k7off+k8) ArsBAs = k7on As(III) ArsB
-
(k7off+k8) ArsBAs = (β4 τB/ln(2)) Op k7on As(III)
+
(k7off+k8) ArsBAs = (β4 τB/ln(2)) OpG k7on As(III)
-
           ArsBAs = (β4 τB/ln(2)) Op (k7on/(k7off+k8)) As(III)
+
           ArsBAs = (β4 τB/ln(2)) OpG (k7on/(k7off+k8)) As(III)
-
           ArsBAs = (β4 τB/ln(2)) Op As(III) / K7
+
           ArsBAs = (β4 τB/ln(2)) OpG As(III) / K7
</pre>
</pre>
Line 219: Line 191:
<pre>
<pre>
-
                      k8 ArsBAs = (Vs/Vc) k6 GlpFAs
+
                        k8 ArsBAs = (Vs/Vc) k6 GlpFAs
-
k8 (β4 τB/ln(2)) Op As(III) / K7 = (Vs/Vc) k6 GlpFT As(III)ex / (As(III)ex + K5)
+
k8 (β4 τB/ln(2)) OpG As(III) / K7 = (Vs/Vc) k6 GlpFT As(III)ex / (As(III)ex + K5)
-
                v7'/K7 Op As(III) = (Vs/Vc) v5 As(III)ex / (As(III)ex + K5)
+
              v7'/K7 OpG As(III) = (Vs/Vc) v5 As(III)ex / (As(III)ex + K5)
-
                        As(III) = (Vs/Vc) v5/(v7' Op) K7 As(III)ex / (As(III)ex + K5)
+
                          As(III) = (Vs/Vc) v5/(v7' OpG) K7 As(III)ex / (As(III)ex + K5)
</pre>
</pre>
-
To get rid of the unknown Op in this equation we can use two equations that are derived below for accumulation, ignoring ArsD for simplicity, as we don't have it in our cells anyway:
+
To get rid of the unknown OpG in this equation we can use two equations that are derived below for accumulation:
<pre>
<pre>
-
               0 = β1 Op + β3 OpH - (ln(2)/τR) ArsR
+
               0 = β1 OpG + β3 OpH - (ln(2)/τR) ArsR
-
(ln(2)/τR) ArsR = β1 Op + β3 OpH
+
(ln(2)/τR) ArsR = β1 OpG + β3 OpH
-
           ArsR = (β1 Op + β3 OpH) (τR/ln(2))
+
           ArsR = (β1 OpG + β3 OpH) (τR/ln(2))
-
  Op = OpT/(1 + ArsR/K3d)
+
  OpG = OpGT/(1 + ArsR²/K3d)
-
OpT = (1 + ArsR/K3d) Op
+
OpGT = (1 + ArsR²/K3d) OpG
-
OpT = Op + ArsR Op / K3d
+
OpGT = OpG + ArsR² OpG / K3d
-
  0 = K3d Op + ArsR Op - K3d OpT
+
  0 = K3d OpG + ArsR² OpG - K3d OpGT
-
  0 = K3d Op + (β1 Op + β3 OpH) (τR/ln(2)) Op - K3d OpT
+
  0 = K3d OpG + (β1 OpG + β3 OpH)² (τR/ln(2))² OpG - K3d OpGT
-
  0 = K3d Op + (β1 Op&sup2; + β3 OpH Op) (τR/ln(2)) - K3d OpT
+
  0 = K3d OpG + (β1 OpG + β3 OpH) (β1 OpG&sup2; + β3 OpH OpG) (τR/ln(2))² - K3d OpGT
-
  0 = β1 (τR/ln(2)) Op&sup2; + (K3d + β3 (τR/ln(2)) OpH) Op - K3d OpT
+
  0 = K3d OpG + β1 OpG β1 OpG&sup2; (τR/ln(2))² + β1 OpG β3 OpH OpG (τR/ln(2))² + β3 OpH β1 OpG&sup2; (τR/ln(2))² + β3 OpH β3 OpH OpG (τR/ln(2))² - K3d OpGT
-
 
+
  0 = β1² (τR/ln(2))² OpG&sup3; + 2 β1 β3 (τR/ln(2))² OpH OpG² + (β3² (τR/ln(2))² OpH² + K3d) OpG - K3d OpGT
-
Op = (-b &plusmn; &radic;(b&sup2; + 4 a c)) / (2a)
+
-
a = β1 (τR/ln(2))
+
-
b = K3d + β3 (τR/ln(2)) OpH
+
-
c = K3d OpT
+
</pre>
</pre>
-
Only the plus of the plus minus is valid here, as a and c are always non-negative and the magnitude of the square root is thus always larger than the magnitude of b.
+
According to Mathematica's solution of <code>Reduce[eq && K3d > 0 && OpGT >= 0 && OpH >= 0 && &beta;1 > 0 && &beta;3 > 0 && &tau;R > 0, OpG, Reals]</code> (where eq is the equation above) there is only one real root, so we solve the equation safely using Newton's (or Halley's) method.
==Accumulation==
==Accumulation==
Line 253: Line 221:
<pre>
<pre>
-
0 = - (k1on ArsR+k2on ArsD) As(III) + k1off ArsRAs + k2off ArsDAs
+
0 = (d/dt) ArsR = β1 OpG + β3 OpH - (ln(2)/τR) ArsR - (d/dt) ArsRAs - 2 (d/dt) ArsRopg
-
0 = - (k3on ArsR+k4on ArsD) OpN + k3off ArsRopn + k3off ArsDopn
+
0 = (d/dt) ArsRAs = k1on ArsR As(III) - k1off ArsRAs
-
0 = - (k3on ArsR+k4on ArsD) OpG + k3off ArsRopg + k3off ArsDopg
+
0 = (d/dt) ArsRopg = k3on ArsR² OpG - k3off ArsRopg
-
0 = β1 (OpN+OpG) + β3 OpH - (ln(2)/τR+k1on As(III)+k3on (OpN+OpG)) ArsR + k1off ArsRAs + k3off (ArsRopn+ArsRopg)
+
-
0 = β2 OpN - (ln(2)/τD+k2on As(III)+k4on (OpN+OpG)) ArsD + k2off ArsDAs + k4off (ArsDopn+ArsDopg)
+
-
0 = k1on ArsR As(III) - k1off ArsRAs
+
-
0 = k2on ArsD As(III) - k2off ArsDAs
+
-
0 = k3on ArsR OpN - k3off ArsRopn
+
-
0 = k4on ArsD OpN - k4off ArsDopn
+
-
0 = k3on ArsR OpG - k3off ArsRopg
+
-
0 = k4on ArsD OpG - k4off ArsDopg
+
</pre>
</pre>
-
From the last four equations it can be seen that the ratio between OpN and ArsR<sub>opn</sub> should be equal to the ratio between OpG and ArsR<sub>opg</sub>, and similarly for ArsD<sub>op?</sub>. This leads to:
+
By eliminating the last two equations from the first and dividing the last two by k?on we are left with:
<pre>
<pre>
-
    Op = OpN + OpG
+
0 = β1 OpG + β3 OpH - (ln(2)/τR) ArsR
-
OpN/OpG = OpNT/OpGT
+
-
OpN/Op = OpNT/OpT
+
-
ArsRop = ArsRopn + ArsRopg
+
-
ArsDop = ArsDopn + ArsDopg
+
-
 
+
-
0 = - (k1on ArsR+k2on ArsD) As(III) + k1off ArsRAs + k2off ArsDAs
+
-
0 = - (k3on ArsR+k4on ArsD) Op + k3off ArsRop + k3off ArsDop
+
-
0 = β1 Op + β3 OpH - (ln(2)/τR+k1on As(III)+k3on Op) ArsR + k1off ArsRAs + k3off ArsRop
+
-
0 = β2 OpN - (ln(2)/τD+k2on As(III)+k4on Op) ArsD + k2off ArsDAs + k4off ArsDop
+
-
0 = k1on ArsR As(III) - k1off ArsRAs
+
-
0 = k2on ArsD As(III) - k2off ArsDAs
+
-
0 = k3on ArsR Op - k3off ArsRop
+
-
0 = k4on ArsD Op - k4off ArsDop
+
-
</pre>
+
-
 
+
-
By eliminating the last four equations from the rest and dividing the last four by k?on we are left with:
+
-
 
+
-
<pre>
+
-
0 = β1 Op + β3 OpH - (ln(2)/τR) ArsR
+
-
0 = β2 OpN - (ln(2)/τD) ArsD
+
0 = ArsR As(III) - K1d ArsRAs
0 = ArsR As(III) - K1d ArsRAs
-
0 = ArsD As(III) - K2d ArsDAs
+
0 = ArsR² OpG - K3d ArsRopg
-
0 = ArsR Op - K3d ArsRop
+
-
0 = ArsD Op - K4d ArsDop
+
</pre>
</pre>
-
Using the fact that the total amount of operators remains constant the last two equations can be used to derive an equation for Op:
+
Using the fact that the "concentration" of operators remains constant the last equation can be used to derive an equation for OpG:
<pre>
<pre>
-
ArsRop = Op ArsR / K3d
+
      0 = ArsR² OpG - K3d ArsRopg
-
ArsDop = Op ArsD / K4d
+
ArsRopg = OpG ArsR² / K3d
-
OpT = Op + ArsRop + ArsDop
+
OpGT = OpG + ArsRopg
-
OpT = Op + Op ArsR / K3d + Op ArsD / K4d
+
OpGT = OpG + OpG ArsR² / K3d
-
OpT = Op (1 + ArsR/K3d + ArsD/K4d)
+
OpGT = OpG (1 + ArsR²/K3d)
-
  Op = OpT/(1 + ArsR/K3d + ArsD/K4d)
+
  OpG = OpGT/(1 + ArsR²/K3d)
</pre>
</pre>
Line 311: Line 249:
<pre>
<pre>
-
  0 = β1 Op + β3 OpH - (ln(2)/τR) ArsR
+
0 = β1 OpG + β3 OpH - (ln(2)/τR) ArsR
-
  0 = β1 OpT + (β3 OpH - (ln(2)/τR) ArsR) (ArsR/K3d + ArsD/K4d + 1)
+
0 = β1 OpGT + (β3 OpH - (ln(2)/τR) ArsR) (ArsR²/K3d + 1)
-
  0 = β1 OpT + β3 OpH ArsR/K3d + β3 OpH (ArsD/K4d + 1) - (ln(2)/τR) ArsR&sup2;/K3d - (ln(2)/τR) ArsR ArsD/K4d - (ln(2)/τR) ArsR
+
0 = β1 OpGT + β3 OpH ArsR²/K3d + β3 OpH - (ln(2)/τR) ArsR&sup3;/K3d - (ln(2)/τR) ArsR
-
  0 = K3d (τR/ln(2)) β1 OpT + (τR/ln(2)) β3 OpH ArsR + K3d (τR/ln(2)) β3 OpH (ArsD/K4d + 1) - ArsR&sup2; - (K3d/K4d) ArsD ArsR - K3d ArsR
+
0 = K3d (τR/ln(2)) β1 OpGT + (τR/ln(2)) β3 OpH ArsR² + K3d (τR/ln(2)) β3 OpH - ArsR&sup3; - K3d ArsR
-
  0 = &frac12; ArsR&sup2; + &frac12; (K3d (ArsD/K4d + 1) - (τR/ln(2)) β3 OpH) ArsR - &frac12; K3d (τR/ln(2)) (β1 OpT + β3 OpH (ArsD/K4d + 1))
+
0 = ArsR&sup3; - (τR/ln(2)) β3 OpH ArsR² + K3d ArsR - K3d (τR/ln(2)) (β1 OpGT + β3 OpH)
-
ArsR = -b1 &plusmn; &radic;(b1&sup2; + c1)
+
-
  b1 = &frac12; (K3d (ArsD/K4d + 1) - (τR/ln(2)) β3 OpH)
+
-
  c1 = K3d (τR/ln(2)) (β1 OpT + β3 OpH (ArsD/K4d + 1))
+
-
 
+
-
  0 = β2 OpN - (ln(2)/τD) ArsD
+
-
  0 = β2 OpNT - (ln(2)/τD) ArsD (ArsR/K3d + ArsD/K4d + 1)
+
-
ArsD = -b2 &plusmn; &radic;(b2&sup2; + c2)
+
-
  b2 = &frac12; K4d (ArsR/K3d + 1)
+
-
  c2 =  K4d (τD/ln(2)) β2 OpNT
+
</pre>
</pre>
-
As b2 is positive (concentrations are always non-negative) only the plus sign of the plus-minuses in the equation for ArsD is a valid choice. In addition, since c1 and c2 are non-negative the square roots are always larger than or equal to the magnitude of b1/b2, so the solution will be non-negative if and only if a plus is used in both equations. These equations for ArsR and ArsD can now be used in a fixed point iteration as follows:
+
According to Mathematica's solution of <code>Reduce[eq && K3d > 0 && OpGT >= 0 && OpH >= 0 && &beta;1 > 0 && &beta;3 > 0 && &tau;R > 0, ArsR, Reals]</code> (where eq is the equation shown above) there is only one real solution, so we can find it safely using Newton's (or Halley's) method.
-
 
+
-
<pre>
+
-
f(ArsR) = -b1 + &radic;(b1&sup2; + c1)
+
-
  with ArsD = -b2 + &radic;(b2&sup2; + c2)
+
-
 
+
-
  f' = -b1' + (2 b1 b1' + c1')/&radic;(b1&sup2; + c1)
+
-
  b1' = &frac12; (K3d/K4d) ArsD'
+
-
  c1' = (τR/ln(2)) β3 OpH (K3d/K4d) ArsD'
+
-
ArsD' = -b2' + (2 b2 b2')/&radic;(b2&sup2; + c2)
+
-
  b2' = &frac12; (K4d/K3d)
+
-
</pre>
+
-
Analogously to the derivation of the equation for Op an equation can be derived for the fraction of unbound arsenic in the cell:
+
Analogously to the derivation of the equation for OpG an equation can be derived for the fraction of unbound arsenic in the cell:
<pre>
<pre>
-
As(III)T = As(III) + ArsRAs + ArsDAs
+
As(III)T = As(III) + ArsRAs
-
As(III)/As(III)T = 1/(ArsR/K1d + ArsD/K2d + 1)
+
As(III)/As(III)T = 1/(ArsR/K1d + 1)
</pre>
</pre>

Revision as of 12:43, 14 August 2009

Igemhomelogo.png

The raw model

A schematic representation of the processes involved in arsenic filtering (keep in mind that ArsR represses the expression of the genes behind OpG). Note that ArsD is not shown here, as it is not present in our E. coli and has a role analogous to ArsR.

The following variables play an important role in our system (these can be concentrations of substances, the density of the cell, etc.):

  • Extracellular:
    • As(III)ex
    • As(V)ex
  • Membrane:
    • GlpF (concentration w.r.t. the exterior of the cell)
    • GlpFAs (concentration w.r.t. the exterior of the cell)
    • ArsB (concentration w.r.t. the interior of the cell)
    • ArsBAs (concentration w.r.t. the interior of the cell)
  • Intracellular:
    • As(III)
    • OpG (concentration of unbound operators)
    • OpH (concentration of ArsR producing operators that are always on)
    • As(V)
    • ArsC
    • ArsR
      ArsR binds to OpG to repress production of the genes they regulate, and binds to As(III) to make it less of a problem for the cell.
       i 
    • ArsRAs (bound to As(III))
      • At equilibrium: ArsR As(III) = (k1off/k1on) ArsRAs
    • ArsRopg (bound to opg)

The variables above can be related to each other through the following "reactions" (color coding is continued below to show which parts of the differential equations refer to which groups of reactions):

  • Transport (based on Rosen1996, Meng2004 and Rosen2009)
    • As(III)ex + GlpF ↔ GlpFAs
    • GlpFAs → GlpF + As(III)
    • As(III) + ArsB ↔ ArsBAs
    • ArsBAs → ArsB + As(III)ex
    • ArsB → null (degradation)
  • Accumulation (based on Chen1997)
    • As(III) + ArsR ↔ ArsRAs
    • OpG + 2 ArsR ↔ ArsRopg
    • OpG → OpG + ArsR + ArsB (transcription + translation)
    • OpH → OpH + ArsR (transcription + translation)
    • ArsR → null (degradation)

Resulting in the following differential equations (please note that some can be formed by linear combinations of the others), using color coding to show the correspondence to the reactions above:

  • (d/dt) As(III)ex = -k5on As(III)ex GlpF + k5off GlpFAs + (Vc/Vs) k8 ArsBAs
  • (d/dt) GlpF = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
  • (d/dt) GlpFAs = k5on As(III)ex GlpF - (k5off+k6) GlpFAs
  • (d/dt) ArsB = -k7on As(III) ArsB + (k7off+k8) ArsBAs + β4 OpG - ln(2)/τB ArsB
  • (d/dt) ArsBAs = k7on As(III) ArsB - (k7off+k8) ArsBAs
  • (d/dt) As(III) = - (d/dt) ArsRAs - k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs
  • (d/dt) OpG = - (d/dt) ArsRopg
  • (d/dt) ArsR = β1 OpG + β3 OpH - (ln(2)/τR) ArsR - (d/dt) ArsRAs - 2 (d/dt) ArsRopg
  • (d/dt) ArsRAs = k1on ArsR As(III) - k1off ArsRAs
  • (d/dt) ArsRopg = k3on ArsR² OpG - k3off ArsRopg

Using the following constants/definitions:

  • k1on, k2on, etc. = reaction rate constants for reactions to a complex
  • k1off, k2off, etc. = reaction rate constants for reactions from a complex
  • K1d - K4d = dissociation constants
    • K1d = k1off/k1on
    • K2d = k2off/k2on = 60µM (Chen1997)
    • K3d = k3off/k3on = 0.33µM (Chen1997, suspect as the relevant reference doesn't actually seem to give any value for this)
    • K4d = k4off/k4on = 65µM (Chen1997)
  • degradation rate = ln(2)/τ
    If you take just the degradation into account you will have the equation dC/dt = -k*C, which leads to C(t) = C(0) e-k t. So if k = ln(2)/τ we get C(t) = C(0) e-ln(2)/τ t = C(0) 2-t/τ. In other words τ is the time it takes for the concentration to half.
     i 
    • ArsR half-life time = τR
  • β1, β2, etc. = production rates
    • β1 = the production rate for ArsR behind the ars promoter
    • β3 = the production rate for ArsR behind our constitutive promoter
    • β4 = the production rate for ArsB behind the ars promoter
  • Vs = volume of solution (excluding cells), Vc = total volume of cells (in solution) (so Vs+Vc is the total volume)
  • v5, v7 = maximum reaction rates (see Michaelis-Menten equation)
    • v5 = k6 GlpFT
    • v7 = k8 ArsBT
  • v7'·OpG = reaction rate when As(III) = K7
    • v7' = k8 (β4 τB/ln(2))
  • K5, K7 = concentration at which the reaction reaches half its maximum reaction rate (see Michaelis-Menten equation)
    • K5 = (k5off+k6) / k5on
    • K7 = (k7off+k8) / k7on (in our model, with regulation of ArsB, this is the concentration As(III) at which the reaction rate equals v7'·OpG)

See Chen1997 for the interplay between ArsR and ArsD (the latter has a role similar to ArsR, but we do not treat it, as it is not present in our system).

Transport

By looking at the system in equilibrium we can more easily assess the impact of parameters and derive formulas for obtaining them. To this end we consider the system when all derivatives are zero (just taking the equations relevant for transport):

0 = -k5on As(III)ex GlpF + k5off GlpFAs + (Vc/Vs) k8 ArsBAs
0 = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
0 =  k5on As(III)ex GlpF - (k5off+k6) GlpFAs
0 = -k7on As(III) ArsB + (k7off+k8) ArsBAs + β4 OpG - ln(2)/τB ArsB
0 =  k7on As(III) ArsB - (k7off+k8) ArsBAs
0 = -k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs

The third equation is equivalent to the second and the fifth can be eliminated from the fourth, leading to:

0 = -k5on As(III)ex GlpF + k5off GlpFAs + (Vc/Vs) k8 ArsBAs
0 = -k5on As(III)ex GlpF + (k5off+k6) GlpFAs
0 = β4 OpG - ln(2)/τB ArsB
0 =  k7on As(III) ArsB - (k7off+k8) ArsBAs
0 = -k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs

By combining the last two equations a rather obvious equation can be derived that essentially expresses that the import rate equals the export rate:

    0 - 0 =    (-k7on As(III) ArsB + k7off ArsBAs + (Vs/Vc) k6 GlpFAs)
             + ( k7on As(III) ArsB - (k7off+k8) ArsBAs)
        0 = (Vs/Vc) k6 GlpFAs - k8 ArsBAs
k8 ArsBAs = (Vs/Vc) k6 GlpFAs

Using the equations above (and the fact that the total amount of importers doesn't change in our model) GlpFAs can be expressed as follows (working towards a Michaelis-Menten equation):

k5on As(III)ex GlpF = (k5off+k6) GlpFAs
               GlpF = GlpFAs (k5off+k6) / (k5on As(III)ex)

 GlpFT = GlpF + GlpFAs
 GlpFT = GlpFAs (1 + (k5off+k6) / (k5on As(III)ex))
GlpFAs = GlpFT / (1 + (k5off+k6) / (k5on As(III)ex))
GlpFAs = GlpFT As(III)ex / (As(III)ex + K5)

Without ArsB regulation

If we disregard ArsB regulation ArsBAs can be determined similarly to GlpFAs:

ArsBAs = ArsBT As(III) / (As(III) + K7)

By substituting the above equations for GlpFAs and ArsBAs we can now derive a relation between the extracellular and intracellular concentrations of arsenic (where we recognize the constants of the well-known Michaelis-Menten equation):

                                              k8 ArsBAs = (Vs/Vc) k6 GlpFAs
                      k8 ArsBT As(III) / (As(III) + K7) = (Vs/Vc) k6 GlpFT As(III)ex / (As(III)ex + K5)
                           v7 As(III) / (As(III) + K7) = (Vs/Vc) v5 As(III)ex / (As(III)ex + K5)
                           v7 As(III) (As(III)ex + K5) = (Vs/Vc) v5 As(III)ex (As(III) + K7)
As(III) (v7 As(III)ex + v7 K5 - (Vs/Vc) v5 As(III)ex) = (Vs/Vc) v5 K7 As(III)ex
                                                As(III) = (Vs/Vc) v5 K7 As(III)ex / (v7 As(III)ex + v7 K5 - (Vs/Vc) v5 As(III)ex)
                                                As(III) = (Vs/Vc) v5 K7 As(III)ex / ((v7 - (Vs/Vc) v5) As(III)ex + v7 K5)

An important flaw in this model is that the production of ArsB is dependent on the concentration of arsenic in the cell (via regulation by ArsR, see our transport page). This could be one of the reasons that this model is unable to fit the curve shown in figure 3A in Kostal2004 (if we try a least squares fit with the equation above, filling in v5 and K5 from what we computed for figure 1B in Meng2004, we get negative values for v7 and K7). (And something similar is true of figure 1 from Singh2008.) This led us to consider the regulation of ArsB, as is described in the following section.

With ArsB regulation

As explained above ArsBAs needs a slightly different approach, as ArsB can be produced in response to arsenic ArsBT is not a (known) constant and we have a formula dependent on OpG instead:

β4 OpG = ln(2)/τB ArsB
  ArsB = (β4 τB/ln(2)) OpG

(k7off+k8) ArsBAs = k7on As(III) ArsB
(k7off+k8) ArsBAs = (β4 τB/ln(2)) OpG k7on As(III)
           ArsBAs = (β4 τB/ln(2)) OpG (k7on/(k7off+k8)) As(III)
           ArsBAs = (β4 τB/ln(2)) OpG As(III) / K7

This now leads to the following relation between intra- and extracellular As(III), note that v7' (in contrast to v7) is not the maximum export rate (it has units of 1/second):

                        k8 ArsBAs = (Vs/Vc) k6 GlpFAs
k8 (β4 τB/ln(2)) OpG As(III) / K7 = (Vs/Vc) k6 GlpFT As(III)ex / (As(III)ex + K5)
               v7'/K7 OpG As(III) = (Vs/Vc) v5 As(III)ex / (As(III)ex + K5)
                          As(III) = (Vs/Vc) v5/(v7' OpG) K7 As(III)ex / (As(III)ex + K5)

To get rid of the unknown OpG in this equation we can use two equations that are derived below for accumulation:

              0 = β1 OpG + β3 OpH - (ln(2)/τR) ArsR
(ln(2)/τR) ArsR = β1 OpG + β3 OpH
           ArsR = (β1 OpG + β3 OpH) (τR/ln(2))

 OpG = OpGT/(1 + ArsR²/K3d)
OpGT = (1 + ArsR²/K3d) OpG
OpGT = OpG + ArsR² OpG / K3d
   0 = K3d OpG + ArsR² OpG - K3d OpGT
   0 = K3d OpG + (β1 OpG + β3 OpH)² (τR/ln(2))² OpG - K3d OpGT
   0 = K3d OpG + (β1 OpG + β3 OpH) (β1 OpG² + β3 OpH OpG) (τR/ln(2))² - K3d OpGT
   0 = K3d OpG + β1 OpG β1 OpG² (τR/ln(2))² + β1 OpG β3 OpH OpG (τR/ln(2))² + β3 OpH β1 OpG² (τR/ln(2))² + β3 OpH β3 OpH OpG (τR/ln(2))² - K3d OpGT
   0 = β1² (τR/ln(2))² OpG³ + 2 β1 β3 (τR/ln(2))² OpH OpG² + (β3² (τR/ln(2))² OpH² + K3d) OpG - K3d OpGT

According to Mathematica's solution of Reduce[eq && K3d > 0 && OpGT >= 0 && OpH >= 0 && β1 > 0 && β3 > 0 && τR > 0, OpG, Reals] (where eq is the equation above) there is only one real root, so we solve the equation safely using Newton's (or Halley's) method.

Accumulation

For many purposes, like determining the total amount of accumulated arsenic, it can be quite useful to consider the system in equilibrium. That is, when the derivatives of all variables to time are zero (just taking the equations relevant for accumulation here, assuming the As(III) concentration to be constant):

0 = (d/dt) ArsR = β1 OpG + β3 OpH - (ln(2)/τR) ArsR - (d/dt) ArsRAs - 2 (d/dt) ArsRopg
0 = (d/dt) ArsRAs = k1on ArsR As(III) - k1off ArsRAs
0 = (d/dt) ArsRopg = k3on ArsR² OpG - k3off ArsRopg

By eliminating the last two equations from the first and dividing the last two by k?on we are left with:

0 = β1 OpG + β3 OpH - (ln(2)/τR) ArsR
0 = ArsR As(III) - K1d ArsRAs
0 = ArsR² OpG - K3d ArsRopg

Using the fact that the "concentration" of operators remains constant the last equation can be used to derive an equation for OpG:

      0 = ArsR² OpG - K3d ArsRopg
ArsRopg = OpG ArsR² / K3d

OpGT = OpG + ArsRopg
OpGT = OpG + OpG ArsR² / K3d
OpGT = OpG (1 + ArsR²/K3d)
 OpG = OpGT/(1 + ArsR²/K3d)

This leads to the following:

0 = β1 OpG + β3 OpH - (ln(2)/τR) ArsR
0 = β1 OpGT + (β3 OpH - (ln(2)/τR) ArsR) (ArsR²/K3d + 1)
0 = β1 OpGT + β3 OpH ArsR²/K3d + β3 OpH - (ln(2)/τR) ArsR³/K3d - (ln(2)/τR) ArsR
0 = K3d (τR/ln(2)) β1 OpGT + (τR/ln(2)) β3 OpH ArsR² + K3d (τR/ln(2)) β3 OpH - ArsR³ - K3d ArsR
0 = ArsR³ - (τR/ln(2)) β3 OpH ArsR² + K3d ArsR - K3d (τR/ln(2)) (β1 OpGT + β3 OpH)

According to Mathematica's solution of Reduce[eq && K3d > 0 && OpGT >= 0 && OpH >= 0 && β1 > 0 && β3 > 0 && τR > 0, ArsR, Reals] (where eq is the equation shown above) there is only one real solution, so we can find it safely using Newton's (or Halley's) method.

Analogously to the derivation of the equation for OpG an equation can be derived for the fraction of unbound arsenic in the cell:

As(III)T = As(III) + ArsRAs
As(III)/As(III)T = 1/(ArsR/K1d + 1)